21 research outputs found

    Implementing Peer-Review Activities for Engineering Writing Assignments

    Get PDF
    Professional engineers spend a considerable portion of their day writing, yet disciplinary writing skills are not addressed in many engineering courses. This study investigates peer review as a mean to enhance student writing in engineering courses. Students completed formative peer reviews using an online peer review system for a group project in a fluid mechanics course (with online and face-to-face sections) and for an individual writing assignment in a senior capstone class in mechanical engineering. A university-wide rubric for disciplinary writing was used to assess student writing performance on interim and final assignments completed over the course of a semester. Online surveys were used to assess student perceptions of the peer review process. The study was implemented over two semesters with iterative revisions in instruction made between semesters based on initial findings. Results suggest that peer review can increase student performance, as long as reflections are used to prompt student revision, regardless of the class delivery method or assignment type

    Measures of Functional Performance and Their Association With Hip and Thigh Strength

    Get PDF
    Context: Insufficient hip and thigh strength may increase an athlete\u27s susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. Objective: To determine if functional performance tests are valid indicators of hip and thigh strength. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. Intervention(s): During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Main Outcome Measure(s): Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r 2. We used Pearson correlations to evaluate the associations between functional performance and strength. Results: In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r2 = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r2 = 38, P ≤ .01) and hip-flexor (r2 = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r2 = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r2 = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r2 = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Conclusions: Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups

    Effects of Lateral Ligament Sectioning on the Stability of the Ankle and Subtalar Joint

    Get PDF
    Patients with subtalar joint instability are often diagnosed with ankle instability. Only after a prolonged period of time in which a patient does not improve after treatment for ankle instability is subtalar joint instability considered. To develop a clinically relevant method to diagnose subtalar joint instability, the kinematics of the simulated unstable subtalar joint were examined. A 6 degree-of-freedom positioning and loading device was developed. Plantarflexion/dorsiflexion, inversion/eversion, and internal/external rotation were applied individually or as coupled motions along with an anterior/posterior drawer. Kinematic data were collected from sensors attached to the calcaneus, talus, and tibia by keeping all the ligaments intact, and by serially sectioning anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), cervical ligament, and talocalceneal interosseous ligament. Kinematic results were reported using Euler angles. The ATFL and CFL contributed talocrural instability, similar to previous studies. The interosseous ligament was the greatest contributor to subtalar joint stability. The hindfoot motion (calcaneus relative to tibia) showed significant increases in motion when the ankle and/or subtalar joint was made to be unstable. Therefore, it is difficult to diagnose subtalar joint instability on physical examination alone. (C) 2011 Orthopaedic Research Society

    The First Year of an Undergraduate Service Learning Partnership to Enhance Engineering Education and Elementary Pre-Service Teacher Education

    Get PDF
    This IUSE project was designed to address three major challenges faced by undergraduate engineering students (UES) and pre-service teachers (PSTs): 1) retention for UESs after the first year, and continued engagement when they reach more difficult concepts, 2) to prepare PSTs to teach engineering, which is a requirement in the Next Generation Science Standards as well as many state level standards of learning, and 3) to prepare both groups of students to communicate and collaborate in a multi-disciplinary context, which is a necessary skill in their future places of work. This project was implemented in three pairs of classes: 1) an introductory mechanical engineering class, fulfilling a general education requirement for information literacy and a foundations class in education, 2) fluid mechanics in mechanical engineering technology and a science methods class in education, and 3) mechanical engineering courses requiring programming (e.g., computational methods and robotics) with an educational technology class. All collaborations taught elementary level students (4th or 5th grade). For collaborations 1 and 2, the elementary students came to campus for a field trip where they toured engineering labs and participated in a one-hour lesson taught by both the UESs and PSTs. In collaboration 3, the UESs and PSTs worked with the upper-elementary students in their school during an afterschool club. In collaborations 1 and 2, students were assigned to teams and worked remotely on some parts of the project. A collaboration tool, built in Google Sites and Google Drive, was used to facilitate the project completion. The collaboration tool includes a team repository for all the project documents and templates. Students in collaboration 3 worked together directly during class time on smaller assignments. In all three collaborations lesson plans were implemented using the BSCS 5E instructional model, which was aligned to the engineering design process. Instruments were developed to assess knowledge in collaborations 1 (engineering design process) and 3 (computational thinking), while in collaboration 2, knowledge was assessed with questions from the fundamentals of engineering exam and a science content assessment. Comprehensive Assessment of Team Member Effectiveness (CATME) was also used in all 3 collaborations to assess teamwork across the collaborations. Finally, each student wrote a reflection on their experiences, which was used to qualitatively assess the project impact. The results from the first full semester of implementation have led us to improvements in the implementation and instrument refinement for year 2

    Effects of Training on Physical Performance Wearing Personal Protective Equipment

    Get PDF
    We evaluated the effects of wearing a weighted vest during 6 weeks of military-style training. Forty-three subjects were randomly assigned to a control group or a vest group (carrying 4-5 kg for 2 weeks, and 8-10 kg for 4 weeks), with 37 completing the study (17 vest, 20 control). Both groups performed stair climbing in addition to standard Marine Corps training for 1 hour, four times per week. Pre- and post-tests were performed while wearing military personal protective equipment, with the exception of the Marine Physical Readiness Test (PRT). Both groups significantly improved PRT scores (8.4% 3-mile run, 28-38% calisthenics) and an agility drill (4.4%). Significant improvements in uphill treadmill performance (6.8% vest, 3.0% control) and maximal oxygen consumption (10.7% vest, 6.8% control) were approximately twice as much in the vest versus control group, although these differences did not reach significance (p = 0.16 and 0.13, respectively)

    Instruction and Jump-Landing Kinematics in College-Aged Female Athletes Over Time

    Get PDF
    Context: Instruction can be used to alter the biomechanical movement patterns associated with anterior cruciate ligament (ACL) injuries. Objective: To determine the effects of instruction through combination (self and expert) feedback or self-feedback on lower extremity kinematics during the box–drop-jump task, running–stop-jump task, and sidestep-cutting maneuver over time in college-aged female athletes. Design: Randomized controlled clinical trial. Setting: Laboratory. Patients or Other Participants: Forty-three physically active women (age = 21.47 ± 1.55 years, height = 1.65 ± 0.08 m, mass = 63.78 ± 12.00 kg) with no history of ACL or lower extremity injuries or surgery in the 2 months before the study were assigned randomly to 3 groups: self-feedback (SE), combination feedback (CB), or control (CT). Intervention(s): Participants performed a box–drop-jump task for the pretest and then received feedback about their landing mechanics. After the intervention, they performed an immediate posttest of the box–drop-jump task and a running–stop-jump transfer test. Participants returned 1 month later for a retention test of each task and a sidestep-cutting maneuver. Kinematic data were collected with an 8-camera system sampled at 500 Hz. Main Outcome Measure(s): The independent variables were feedback group (3), test time (3), and task (3). The dependent variables were knee- and hip-flexion, knee-valgus, and hip- abduction kinematics at initial contact and at peak knee flexion. Results: For the box–drop-jump task, knee- and hip-flexion angles at initial contact were greater at the posttest than at the retention test (P \u3c .001). At peak knee flexion, hip flexion was greater at the posttest than at the pretest (P = .003) and was greater at the retention test than at the pretest (P = .04); knee valgus was greater at the retention test than at the pretest (P = .03) and posttest (P = .02). Peak knee flexion was greater for the CB than the SE group (P = .03) during the box–drop-jump task at posttest. For the running–stop-jump task at the posttest, the CB group had greater peak knee flexion than the SE and CT (P ≤ .05). Conclusions: Our results suggest that feedback involving a combination of self-feedback and expert video feedback with oral instruction effectively improved lower extremity kinematics during jump-landing tasks

    COVID-19 as a Magnifying Glass: Exploring the Importance of Relationships as Education Students Learn and Teach Robotics via Zoom

    Get PDF
    Ed+gineering, an NSF-funded program, adapted hands-on robotics instruction for online delivery in response to the COVID-19 pandemic. This qualitative multiple case study shares the experiences of participating education students in spring 2021 as they collaborated virtually with engineering students and fifth graders to engineer bioinspired robots in an afterschool technology club adapted to be virtual. The online context reduced the education students’ interactions with people other than the engineering students and fifth graders on their team and thus positioned COVID-19 as a metaphorical magnifying glass amplifying the critical role that these relationships played in influencing the project’s outcomes. Through analyzing short-answer reflections, the researchers observed patterns in the ways the education students’ interactions with their engineering and fifth-grade partners shaped their teaching self-efficacy and intention to integrate engineering and coding. Education students appeared to gain the most self-efficacy from feeling supported by, but not dependent upon, their engineering partners, and from adopting engineering-teaching roles. Satisfying interactions with fifth graders and successful production of functioning robots appeared to enhance education students’ intention to integrate engineering and coding into their future instruction. Education students reported gaining self-efficacy for both engineering and coding during the experience, but were more likely to report feeling confident about teaching engineering than teaching coding at the project’s end. Implications and lessons learned are shared, which may be particularly relevant for educators who prepare elementary education students to teach engineering in K-6 settings

    Treatment of Auditory Processing in Noise in Individuals With Mild Aphasia: Pilot Study

    Get PDF
    Purpose: Listening in noise challenges listeners with auditory comprehension impairments in aphasia. We examined the effects of Trivia Game, a computerized program with questions spoken in increasing levels of background noise with success in the game. Methods: We piloted Trivia Game in four individuals with chronic aphasia and mild auditory comprehension impairments. Participants played Trivia Game for 12 twenty-minute sessions. In addition to the Western Aphasia Battery (WAB), we measured outcomes on Quick Speech in Noise (QSIN), a sentence repetition test, administered in auditory (AUD) and auditory+visual (AV) conditions as signal-to-noise ratio varied from 25 to 0 dB. Results: All four participants showed progress within the game in the noise level attained. Increases in repetition accuracy were seen in two participants for the QSIN AUD condition (average of 5.5 words), and in three participants for QSIN AV (average of 16.5 words). One individual increased performance on the WAB. Conclusions: Use of Trivia Game led to improved auditory processing abilities in all four individuals with aphasia. Greater gains noted in the AV condition over AUD suggest that Trivia Game may facilitate speech-reading skills to support comprehension of speech in situations with background noise

    Two Different Fatigue Protocols and Lower Extremity Motion Patterns During a Stop-Jump Task

    Get PDF
    Context: Altered neuromuscular control strategies during fatigue probably contribute to the increased incidence of non-contact anterior cruciate ligament injuries in female athletes. Objective: To determine biomechanical differences between 2 fatigue protocols (slow linear oxidative fatigue protocol [SLO-FP] and functional agility short-term fatigue protocol [FAST-FP]) when performing a running-stop-jump task. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: A convenience sample of 15 female soccer players (age = 19.2 ± 0.8 years, height = 1.67± 0.05m, mass = 61.7 + 8.1 kg) without injury participated. Intervention(s): Five successful trials of a running–stop-jump task were obtained prefatigue and postfatigue during the 2 protocols. For the SLO-FP, a peak oxygen consumption (V˙o2peak) test was conducted before the fatigue protocol. Five minutes after the conclusion of the V˙o2peak test, participants started the fatigue protocol by performing a 30-minute interval run. The FAST-FP consisted of 4 sets of a functional circuit. Repeated 2 (fatigue protocol) × 2 (time) analyses of variance were conducted to assess differences between the 2 protocols and time (prefatigue, postfatigue). Main Outcome Measure(s): Kinematic and kinetic measures of the hip and knee were obtained at different times while participants performed both protocols during prefatigue and postfatigue. Results: Internal adduction moment at initial contact (IC) was greater during FAST-FP (0.064 ± 0.09 Nm/kgm) than SLO-FP (0.024±0.06 Nm/kgm) (F1,14 = 5.610, P= .03). At IC, participants had less hip flexion postfatigue (44.7°±8.1°) than prefatigue (50.1°± 9.5°) (F1,14 = 16.229, P= .001). At peak vertical ground reaction force, participants had less hip flexion postfatigue (44.7°± 8.4°) than prefatigue (50.4°± 10.3°) (F1,14 = 17.026, P=.001). At peak vertical ground reaction force, participants had less knee flexion postfatigue (−35.9°± 6.5°) than prefatigue (−38.8°± 5.03°) (F1,14 = 11.537, P= .001). Conclusions: Our results demonstrated a more erect landing posture due to a decrease in hip and knee flexion angles in the postfatigue condition. The changes were similar between protocols; however, the FAST-FP was a clinically applicable 5-minute protocol, whereas the SLO-FP lasted approximately 45 minutes

    Partnering Undergraduate Engineering Students With Preservice Teachers to Design and Teach an Elementary Engineering Lesson Through Ed+gineering

    Get PDF
    Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact
    corecore